
2
Hardware Architecture and Data
Manipulation

William W.-Y. Hsu
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

CONTENTS
2.1 Introduction . 5
2.2 Simulators . 6
2.3 Complete instruction set . 8
2.4 Simple instruction combinations . 9

2.4.1 Immediate, direct, and indirect addressing 9
2.4.2 Branching . 10
2.4.3 Looping . 11

2.5 Lab Questions . 12
2.6 Lab Report . 13

2.1 Introduction
The author of our textbook has designed a simple machine lan-
guage for a theoretical computer, which uses the RISC instruction
set architecture, discussed in Chapter 2 and Appendix C. This is
called a simulator, which mimics the way a computer runs machine
language programs. This simulator is very similar to modern com-
puters as it has a program counter register, instruction register,
16 general purpose registers, and 256 bytes of main memory. It
also contains an arithmetic & logic unit (ALU) which can perform
ADD, AND, OR, XOR, and ROR operations. The memory of this virtual
computer follows the von-neumann architecture, which can store
both the machine program and data.

5

6 Introduction to Computers— Laboratory manual and exercises

The program that we will be using in this laboratory is a Win-
dows program so you can execute it on any PC. Moreover, we also
provide a C source code version that you can compile it for any
other target platforms. Upon execution, you will see the GUI of
the simulator as shown in Figure 2.1.

FIGURE 2.1
The virtual architecture simulator GUI.

2.2 Simulators
Programs, including assembly language, are for human to under-
stand. A CPU can only execute the instruction code of a machine
language, which is rather difficult for a human to write directly.
This simulator provides a interface for loading assembly languages
and convert it into machine language for the virtual CPU to run.
The Open button in Figure 2.1 can load an assembly program,
usually stored as a *.asm file.

Hardware Architecture and Data Manipulation 7

By using the Open button, we can load an assembly program.
Suppose we load the textbook.asm file, with the contents as fol-
lows:

1 ; This i s a machine program in the textbook
load R5, [0x6C] ; Load the value of memory address 0x6C into R5

3 load R6, [0x6D] ; Load the value of memory address 0x6D into R6
addi R0, R5, R6 ; Adds the value of R5 and R6 and store i t in R0

5 s tore R0, [0x6E] ; Stores the value of R0 to memory address 0x6E
halt

we get an editor showing the following assembly code in Figure
2.2.

FIGURE 2.2
Loading an assembly file into the simulator.

After the program has been loaded into the editor, we can
push the assemble button to convert the assembly language into
machine codes. Shown in Figure 2.3, the machine code has been
stored at memory 0x00, and the program counter register (PC) is
set to 00, which is the beginning of the program. You can verify
to see if the assembly code converts to the machine code as listed
in the PPT slides of the main course (or Figure 2.2 in the text-
book). The machine instruction is stored starting at address 0x00,
156C166D5056306EC0.

Before we start to execute the program, we need to fill in val-
ues for address 0x6C and 0x6D. For example, we can put in the
value 0x12 and 0x2A respectively. The simulator has a button Run

8 Introduction to Computers— Laboratory manual and exercises

FIGURE 2.3
Converting the assembly file into machine code.

which executes the program from the beginning to the end, and
a Step functionality to run the program line by line. We will use
the step button to demonstrate. Starting from PC=0x00, after
we press step once, we get the results shown in Figure 2.4. The
current PC has been increased to PC=0x02, pointing to the next
instruction to be fetched, and the instruction register IR=0x156C,
meaning the instruction that has just been executed. We see that
after executing 0x156C, the contents of register R5=0x12, which
is copied from the memory address 0x6C.

The result of second step, executing the instruction IR=0x166D
is shown in Figure 2.5. We can see that the value of register
R6=0x2A is now copied from the memory address 0x6D.

The third instruction 0x5056, conducts integer addition of the
registers R5 and R6 and stores the result in R0=0x3C (see Figure
2.6).

The fourth instruction stores the content of register R0 back
into memory address 0x6E (see Figure 2.7), and the last instruction
0xC000 end the program (see Figure 2.8).

Hardware Architecture and Data Manipulation 9

FIGURE 2.4
Executing 0x156C.

2.3 Complete instruction set
The complete instruction set for this virtual architecture is listed
in Table.

2.4 Simple instruction combinations
The RISC instruction set can be combined to generate complex
function. We will demonstrate some of them in this section.

2.4.1 Immediate, direct, and indirect addressing

There are three modes of addressing that can be used in this sim-
ulator. Consider the following instructions:

load R1, 0x64
load R1, [0x64]
load R1, [R5]

10 Introduction to Computers— Laboratory manual and exercises

FIGURE 2.5
Executing 0x156D.

The first instruction is immediate instructions, which loads the
value 0x64 into register R1. The second instruction is direct ad-
dressing, which loads the value stored in memory address 0x64
into register R1. The last instruction is indirect addressing, similar
to pointer concept in C. It loads the value of the memory address
stored in register R5 into register R1. These instructions are similar
to the following C code:

a = 100;
2 a = b ; // where b has been assigned the value 100 before

a = *b ; // where b i s now r eg i s t e r R5

2.4.2 Branching

Consider the following C code:
1 i f (a == 10) // Conditional branch te s t

; // then construct
3 else

; // e l s e construct

This code can be implemented using the jmpEQ instruction.
; A branching structure

2 load R0, 0x0A ; Loads the value 10 into R0
; Let R1 be some value

4 jmpEQ R1=R0, A ; Jumps to labe l A i f R1 = R0

Hardware Architecture and Data Manipulation 11

FIGURE 2.6
Executing 0x5056.

. . . . ; ’ e l s e ’ part of code
6 jmp Exit ; Unconditionally jump to labe l Exit
A: ; ’ then ’ part of code

8
Exit : ; Outside the i f−then−e l s e structure

10 halt

2.4.3 Looping

Consider the following C code:
int a ;

2
for (a = 0; a < 100; a++);

We can convert the above program into a assembly code using
jmpLE instructions to mimic looping. Using R5 to represent the
variable a, we use it as the control variable to detect wether we
should continue looping or not. In additions, we have to convert
constants within the C program and store it somewhere. Here we
put the value 100 (or 0x64 in hexadecimal) in R0 for jmpLE to
compare. Also, we need the value 1 for increment, so we store the
value into R1.

1 ; A looping code
load R0, 0x64 ; Loads the value 100 into R0

12 Introduction to Computers— Laboratory manual and exercises

FIGURE 2.7
Executing 0x306E.

3 load R1, 0x0 ; Loads the value 0x0 into R1
load R2, 0x1 ; Loads the value 0x1 into R2

5 Loop : addi R1, R1, R2 ; Add: R1 = R1 + R2
. . . . ; Within loop ins t ruc t ions

7 jmpLE R1<=R0, Loop ; I f R1 <= R0, then branch to Loop
. . . . ; Exits loop

9 halt ;

2.5 Lab Questions
• Write a program to compute the XOR value of address 0x6C,

0x6D, and store the results in address 0x6E.

• Write a program to swap the values of memory location of 0xA0
and 0xB0.

• Fill in the values 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xA into the memory location starting from 0x50. Write a as-
sembly program and add the values within the memory loca-
tions 0x50 to 0x59 and store it into memory location 0x40.

Hardware Architecture and Data Manipulation 13

FIGURE 2.8
Executing 0xC000.

• Write a program to add the values of 1 to x, where 1 ≤ x ≤ 20.
(x can be stored in some register)

• For the program in Figure 2.2, instead of adding the value of
memory address 0x6C and 0x6D, i.e., 0x6C + 0x6D, change
the program with the available instructions to do subtraction,
i.e., 0x6D - 0x6D.

• (Hard) Write a program to perform bubble sort within the
memory locations of 0xC0 to 0xCF. (Requires using Op-code
D and E)

2.6 Lab Report
Your lab report is due before the next class.

14 Introduction to Computers— Laboratory manual and exercises

Machine instruction
Op-code Operand Assembly Instruction Operation

1 RXY load R, [XY] Load R with the content from the
memory cell at address XY

2 RXY load R, XY Load R with the bit pattern XY
3 RXY store R, [XY] Store the content of R into the

memory cell at address XY
4 0RS move S, R Move content of R into S
5 RST addi R, S, T Add S and T and put the result

in R (R, S, and T are in two’s
complement integer notation)

6 RST addf R, S, T Add S and T and put the result
in R (R, S, and T are in floating-
point notation)

7 RST or R, S, T OR the bit patterns in S and T
and put the result in R

8 RST and R, S, T AND the bit patterns in S and T
and put the result in R

9 RST xor R, S, T XOR the bit patterns in S and T
and put the result in R

A R0X ror R, X Circularly rotate the bit pattern
in R one bit to the right X times

B RXY jmpEQ R=R0, XY Start decoding the instruction lo-
cated at address XY if the bit
pattern in R is equal to the bit
pattern in register 0

C 000 halt Halt execution
D 0RS load R, [S] Load R with the content from the

memory cell whose address is in
S

E 0RS store R, [S] Store the content of R into the
memory cell whose address is in
S

F RXY jmpLE R<=R0, XY Start decoding the instruction lo-
cated at address XY if the bit
pattern in R is less than or equal
to the bit pattern in register 0

jmp XY Unconditional jump to address
XY

db XY Creates a static space at address
XY filled with data

TABLE 2.1
The instruction set of the simulator.

