
3
Combinational logic design

William W.-Y. Hsu
Department of Computer Science and Engineering
Department of Environmental Biology and Fisheries Science
National Taiwan Ocean University

CONTENTS
3.1 Introduction . 15

3.1.1 Sum-of-products Form . 15
3.1.2 Product-of-sums Form . 16
3.1.3 Simplifying Logic Circuits . 16

3.2 Designing Combinational Logic Circuits . 18
3.3 Karnaugh Map Method . 19
3.4 Lab Questions . 23
3.5 Lab Report . 25

3.1 Introduction
In this lab, we will introduce simple methods to convert a logic ex-
pression into a sum-of-products expression. This will include per-
forming necessary steps to reduce a sum-of-products expression to
its simplest form, and to use Boolean algebra and the Karnaugh
map as tools to simplify and design logic circuits. By the help of
a truth table, you will be able to design simple logic circuits with
it.

3.1.1 Sum-of-products Form

A sum-of-product expression consists of two or more AND(·, ∧)
terms that are ORed(+, ∨) together. For example:

F = ABC + ĀBC̄ + AB̄C̄

15

16 Introduction to Computers— Laboratory manual and exercises

F = AB + ĀBC̄ + C̄D̄ +D

Note that the invert sign usually cover one variable as it has dif-
ferent meaning, i.e., AB = (A ·B) and ĀB̄ = Ā · B̄. The sum
is the Boolean OR operation and the product is the Boolean AND
operation.

3.1.2 Product-of-sums Form

The product-of-sums expression consists of two or more OR terms
that are ANDed together. For example:

F = (A+ B̄ + C)(A+ C)

F = (A+ B̄)(C̄ +D)F

3.1.3 Simplifying Logic Circuits

Many logic circuits are very complex at the first design, and it can
be simplified. The objective is to reduce the logic circuit expression
to a simpler form so that fewer gates, connections, and levels are
required to construct the circuit. In Figure 3.1, the logic circuit
represents the function

F = ABC + AB̄(ĀC̄),

which can be simplified into the circuit represented in Figure 3.2.
The equivalent Boolean function is

F = A(B̄ + C).

There exists multiple methods for simplifying logic circuit in-
cludes. The most direct way is to use Boolean algebra, i.e., the
algebraic simplification method. However, this method is usually
based on experience and often becomes a trial-and-error process.
Also, there is no easy way to tell whether a simplified expression
is in it simplest form.

There are two essential steps for algebraic simplification
method. First, the original expression is put into the sum-of-
products form by repeated application of DeMorgan’s theorem

Combinational logic design 17

A

C

B

F

FIGURE 3.1
A complex logic circuit. A typical circuit design before simpli-
fication.

A

B

C F

FIGURE 3.2
A simplified logic circuit. The complex circuit in Figure 3.1
after simplification. These 2 circuits are equivalent.

and multiplication of terms. Then the product terms are checked
for common factors, and factoring is performed whenever possible.

We also covered some logic. Here is DeMorgan’s law:

¬[p ∧ q] ≡ ¬p ∨ ¬q, (3.1)

and the other form:

¬[p ∨ q] ≡ ¬p ∧ ¬q. (3.2)

Some examples in Table 3.1 shows that very complex Boolean
function can be simplified into a much readable form.

Some special functions that should be remembered is the XOR
(Exclusive OR) and the XNOR (Exclusive NOT OR) gates. The XOR
gate can be represented as

XOR = AB̄ + ĀB = (A+B)(Ā+ B̄)

18 Introduction to Computers— Laboratory manual and exercises

Original Function Simplifed function
ABC + AB̄(ĀC̄) A(B̄ + C)
ABC + ABC̄ + AB̄C A(B + C)

ĀC(ĀBD) + ĀBC̄D̄ + AB̄C B̄C + ĀD̄(B + C)
(Ā+B)(A+B +D)D̄ BD̄

TABLE 3.1
Simplification of Boolean functions. The Boolean functions
can be simplified using DeMorgan’s law.

and the XNOR gate can be represented as

XNOR = (A+ B̄)(Ā+B) = AB + ĀB̄.

3.2 Designing Combinational Logic Circuits
A simple way to design a combinational logic circuit is by using
the truth table. The procedure goes as follows:

1. Set up the truth table.
2. Write the AND term for each case where the output is a 1.
3. Write the sum-of-products expression for the output.
4. Simplify the output expression.
5. Implement the circuit for the final expression.
For example, consider the following problem. For a 3 digit bi-

nary number b2b1b0, if the value is greater than or equal 3 in the
decimal system, then output an 1. The truth table for this problem
is shown in Table 3.2.

Converting the truth table in Table 3.2 results in the following
Boolean function

F = ĀBC + AB̄C̄ + AB̄C + ABC̄ + ABC.

Combinational logic design 19

b2 (A) b1 (B) b0 (C) Output (F)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

TABLE 3.2
A truth table. This is the truth table for the problem in the text.

After some algebraic computations, we can simplify the above
function into

F = A+BC.

3.3 Karnaugh Map Method
In 1953, Maurice Karnaugh was a telecommunications engineer
at Bell Labs. While exploring the new field of digital logic and its
application to the design of telephone circuits, he invented a graph-
ical way of visualizing and then simplifying Boolean expressions.
This graphical representation, now known as a Karnaugh map,
or Kmap, is named in his honor. A Karnaugh map is a matrix
consisting of rows and columns that represent the output values
of a Boolean function. The output values placed in each cell are
derived from the minterms of a Boolean function. A minterm is a
product term that contains all of the function’s variables exactly
once, either complemented or not complemented.

A function with 2 variables x and y has the minterms x̄ȳ, x̄y,
xȳ, and xy. For the Boolean function F (x, y) = xy + xȳ, the
minterms are shown in Figure 3.3. Similarly, a function having
three inputs has the minterms shown in Table 3.4.

20 Introduction to Computers— Laboratory manual and exercises

Minterm X Y F
x̄ȳ 0 0 1
x̄y 0 1 0
xȳ 1 0 1
xy 1 1 1

TABLE 3.3
Minterms of a Boolean function.Minterms for a Boolean func-
tion with 2 variables.

Minterm X Y Z
x̄ȳz̄ 0 0 0
x̄ȳz 0 0 1
x̄yz̄ 0 1 0
x̄yz 0 1 1
xȳz̄ 1 0 0
xȳz 1 0 1
xyz̄ 1 1 0
xyz 1 1 1

TABLE 3.4
Minterms of a Boolean function.Minterms for a Boolean func-
tion with 3 variables.

A Karnaugh map has a cell for each minterm, which means that
for each line in the truth table, there is a corresponding cell. For
the function F (X,Y) = X + Y , the truth table is shown in Table
3.5. This function is equivalent to the OR of all of the minterms
that have a value of 1, thus,

F (X,Y) = X + Y = X̄Y + xȲ +XY.

However, this function is not in its simplest form yet. It can be
reduced by using the Karnaugh map by finding adjacent 1s in the
Karnaugh map that can be collected into groups that are powers of
two. The Karnaugh map for function F is shown in Figure 3.3(a).
In this example, we have 2 groups as shown in Figure 3.3(b).

Combinational logic design 21

Minterm X Y F
x̄ȳ 0 0 0
x̄y 0 1 1
xȳ 1 0 1
xy 1 1 1

TABLE 3.5
Truth table for F (X,Y) = X + Y .

(a) The Karnaugh
map for function F .

(b) Groups found in
the Karnaugh map.

FIGURE 3.3
A 4x4 Karnaugh map. The Karnaugh map can be used to sim-
plify Boolean logic functions.

The rules of Karnaugh map simplification are:

1. Groupings can contain only 1s; no 0s.
2. Groups can be formed only at right angles; diagonal

groups are not allowed.
3. The number of 1s in a group must be a power of 2–even

if it contains a single 1.
4. The groups must be made as large as possible.
5. Groups can overlap and wrap around the sides of the Kar-

naugh map.
A Karnaugh map for three variables is constructed as shown

in Figure 3.4. Notice that the values for the Y Z combination at
the top of the matrix form a pattern that is not a normal binary
sequence. This is to allow the variable pair to change value one

22 Introduction to Computers— Laboratory manual and exercises

at a time. Figure 3.4 is read as follows. The first row contains all
minterms where X has a value of zero. The first column contains
all minterms where Y and Z both have a value of zero. The second
column contains all minterms where Y has a value of 0 and Z has
a value of 1.

FIGURE 3.4
A 3 variable Karnaugh map. The minterms are listed in each
cell.

Consider the function

F (X,Y, Z) = X̄Ȳ Z + X̄Y Z +XȲ Z +XY Z.

The Karnaugh map for F (X,Y, Z) is shown in Figure 3.5. By
grouping all the 1s, it shows us that changes in the variables X
and Y have no influence upon the value of the function. Finally,
this Boolean function can be simplified to F (X,Y, Z) = Z.

FIGURE 3.5
A 3 variable Karnaugh map. A 3 variable Karnaugh map that
can be simplified.

Consider the function

F (X,Y, Z) = X̄Ȳ Z̄ + X̄Ȳ Z + X̄Y Z + X̄Y Z̄ +XȲ Z̄ +XY Z̄.

Combinational logic design 23

The Karnaugh map for F (X,Y, Z) is shown in Figure 3.6. This
example shows a group that wraps around the sides of a Karnaugh
map, telling us that the values of X and Y are not relevant to the
term of the function that is encompassed by the group. The green
group in the top row tells us that only the value of X is significant
in that group. It is complemented in that row, so the other term
of the reduced function is X̄. Finally, this Boolean function can be
simplified to F (X,Y, Z) = X̄ + Z̄.

FIGURE 3.6
A 3 variable Karnaugh map. A 3 variable Karnaugh map that
can be simplified.

This model can be extended to 4 variables as shown in Figure
3.7. Consider the function

F (W,X, Y, Z) = W̄ X̄Ȳ Z̄+W̄ X̄Ȳ Z+W̄ X̄Y Z̄+W̄XY Z̄+WX̄Ȳ Z̄+WX̄Ȳ Z+WX̄Y Z̄

and is mapping on Figure 3.8. By picking the group cross the edges
of the Karnaugh map, we can simplify the function to

F (W,X, Y, Z) = W̄ Ȳ + X̄Z̄ + W̄Y Z̄.

It is possible to have multiple-choice as to how to pick groups
within a Karnaugh even while keeping the groups as large as possi-
ble. The (different) functions that result from the groupings below
are logically equivalent, i.e., which are all correct solutions.

For further study, there are also terms call “don’t care” terms
which can be used to assist in simplifying the functions. The
Karnaugh map for variables greater than 6 is hard to decipher.
Other methods for more variables also exist, such as the Quinn-
McCluskey method.

24 Introduction to Computers— Laboratory manual and exercises

FIGURE 3.7
A 4 variable Karnaugh map. The miniterms are shown in each
cell.

FIGURE 3.8
A 4 variable Karnaugh map. The simplification process can
cross the edges of the Karnaugh map.

3.4 Lab Questions
For the questions below, please write down the Boolean functions,
truth tables, the simplification method and process, and the final
circuit using LogicCircuit.

1. (50) Design a logic circuit which implements a majority
voter. There are 3 people A, B, and C. If 2 out of the three
people votes for an yes, i.e., a logic 1, then the output is
1. Otherwise, output 0.

Combinational logic design 25

2. (50) Design a logic circuit that is to produce a 1 or HIGH
output when the voltage (represented by a four-bit binary
number ABCD) is greater than 6V.

3.5 Lab Report
Your lab report is due in class or no later than 1 week after the
lab.

